CSE 487/587 Information Structures Spring 2005

Instruction Sheet Mar 30, 2005
Creating, building and executing your own grid service

You should have got familiar with building and executing the provided grid services
(Mathservice and Amazonsearchservice). This document walks you through creating your
own gridservice by reusing code from the Mathservice.

It also gives some background information about a number of things related to building
your own service. Make sure you read those comments.

Throughout the document, wherever you see <username> replace it with your actual
username (mhvora, etc.)

Unless otherwise mentioned, all paths are relative to the STUTORIAL_DIR directory.

Basic concepts

A simple grid service, requires the following files from the developer:

« Service implementation class (MathImpl. java): This class actually implements the
methods that your grid service is supposed to provide.

« Schema definition file (.gwsdl file): This XML file specifies the methods that your
service will implement in an extremely structured way. Its syntax is very similar to a
.wsd1 file.

« Deployment descriptor (server-deploy.wsdd): This file specifies service name
(......MathService), service implementation class (org.globus...impl.MathImpl) hame,
PortType class name (org.globus...MathPortType) and also schema definition file
(Math_service.wsdl)

Directory structure and Naming convention
The files that you need are located in two different directory hierarchies.

« The implementation class and deployment descriptor will be present in:
org/globus/<username>_progtutorial/services/<service directory>/

\
\———> impl/
\--—> server-deploy.wsdd

This directory will contain a sub-directory impl, that must contain the Implementation
class and it also contains the deployment descriptor. If you service is named XyzService,
the implementation class is usually named xyzTmp1.

« The schema definition file (.gwsd1) is present inside:

schema/<username>_progtutorial/<service directory>

There is no strict convention to follow when naming the .gwsdl file.

CSE 487/587 Information Structures Spring 2005

<service directory> mentioned above could be multiple directories too (especially in the
first case). For the simple MathService, the service directory is “core/first”. Note that
the service directories in the above two cases does not have to be the same.

The build script

build.sh and ANT (using build.xml) do a lot of tasks when you actually build the service.
This includes creating build directories, generating and compiling stub classes, compiling
the implentation class and packaging files together.

Start creating your own service
We will create a simple service, which will calculate the commission of a salesman, given

the employee’s sales amount and grade. There will just be a single method:
public double calcComm(double sales, int grade)

1. Create the following three directories:

We will place the implementation class and deployment descriptor in:
org/globus/<username>_progtutorial/services/commission

We will place the schema definition file in:
schema/<username>_progtutorial/CommissionService

The client is present in:
org/globus/<username>_progtutorial/clients/commission

2. Copy the MathService files into these directories and rename them. We will
then modify these files.

Copy the contents of:

org/globus/<username>_progtutorial/services/core/first

to:
org/globus/<username>_progtutorial/services/commission

Rename the implementation class from MathImpl.java tO CommissionImpl.java

Copy the contents of:

schema/<username>_progtutorial/MathService

to:
schema/<username>_progtutorial/CommissionService

Rename the schema definition file from Math.gwsdl tO commission.gwsdl

Copy the contents of:
org/globus/<username>_progtutorial/clients/MathService
to:
org/globus/<username>_progtutorial/clients/commission

. J

Modify Implementation class (CommissionImpl.java)
As mentioned before, the implemtation class implements all the methods that the service
is supposed to provide. What the service “provides” is defined by the .gusd1 file.

CSE 487/587 Information Structures Spring 2005

This class must implement the automatically generated interface commissionPortType. This
interface is generated by the build script.

This class may extend persistentGridserviceTmpl unless you use Operation Providers (i.e.
the Delagation Model)

CSE 487/587 Information Structures Spring 2005

4 N
public double calculateCommission (double sales, int grade) throws RemoteException

{

int commissionPercent;

switch (grade) {

case 1:
commissionPercent = 20;
break;

case 2:
commissionPercent = 15;
break;

case 3:
commissionPercent = 10;
break;

case 4:
commissionPercent = 5;
break;

default:
commissionPercent = 2;

}

return (sales * commissionPercent / 100);

=)

Modify schema definition file (commission.gwsd1)
The gwsd1 file is very similar in syntax to the Web Services wsa1 file. In fact, for
portability, the build script creates an equivalent wsd1 file based on the gwsa1 file.

Basically, it is used to define methods that will be implemented by the service. The build
script uses this file to generate the PortType interface file.

The gwsdl is highly structured. To understand how it is specified, visualize methods as
objects and input and output parameters as messages that are passed to and from the
method. The message itself carries an object of the “type” of the relevant parameters.

Type: Type:
class calcComm { class calcCommResponse
double sales; {

int grade;
00 :

calcCommOutputMessage

double commission;
calcCommission

calcComminputMessage

Hence, to define a method, you must first declare the “type” of object that is transported
in the message. Then, we must define the two input and output “messages” separately.
After that we declare the “operation” (method).

CSE 487/587 Information Structures Spring 2005

CSE 487/587 Information Structures Spring 2005

CSE 487/587 Information Structures Spring 2005

Modify deployment descriptor (server-deploy.wsdd):

The deployment descriptor gets copied into the grid archive (.gar) as is. It is used when

you deploy your service into Globus to figure out locations of component files. At this point

of time, you need to know that the deployment descriptor has the following options that
need to be changed:

« Service Name: This is mentioned in the higher-level service element. This is the name
that gets reflected in the container that you start up. Remember that you must have
your username in this service name. The complete service name, includes the server
name, port number appended by “ogsa/services”. Complete service name for the

Commission service would be
http://<machine IP>:<port number>/ogsa/services/<username>/CommissionService

5. Make modifications to server-deploy.wsdd

a) Change service name as follows:
<service name="<username>/CommissionService" provider="Handler" style="wrapped">

« Name: This is a name of the service.

b) Change name as follows:
<parameter name="name" value="CommissionService"/>

. Base Class Name: This needs to point to the Implementation Class.

c) Change baseClassName as follows:
<parameter name="baseClassName"
value="org.globus.<username>_progtutorial.services.commission.impl.CommissionImpl"/>

« Class Name: This needs to point to the PortType Interface.

d) Change className as follows:
<parameter name="className"
value="org.globus.<username>_progtutorial.stubs.CommissionService.CommissionPortType"

/>

« Schema Path: This needs to point to the schema definition file (.wsdl) format. This file
is generated by the build script for you.

e) Change className as follows:
<parameter name="schemaPath"
value="schema/<username>_progtutorial/CommissionService/Commission_service.wsdl"/>

CSE 487/587 Information Structures Spring 2005

()
Finally, after modification, server—deploy.wsdd will look as follows:
<?xml version="1.0"?>
<deployment name="defaultServerConfig" xmlns="http://xml.apache.org/axis/wsdd/"
xmlns: java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="mhvora_progtutorial/core/first/MathService" provider="Handler"
style="wrapped">
<parameter name="name" value="CommissionService"/>
<parameter name="baseClassName"
value="org.globus.mhvora_progtutorial.services.commission.impl.CommissionImpl"/>
<parameter name="className"
value="org.globus.mhvora_progtutorial.stubs.CommissionService.CommissionPortType"/>
<parameter name="schemaPath"
value="schema/mhvora_progtutorial/CommissionService/Commission_service.wsdl"/>

<!-— Start common parameters ——>

<parameter name="allowedMethods" value="*"/>

<parameter name="persistent" value="true"/>

<parameter name="handlerClass" value="org.globus.ogsa.handlers.RPCURIProvider"/>
</service>

. J

Modify namespace2package.mappings
This file is used to map from XML namespaces mentioned in the schema definition file to
corresponding Java packages

6. Add the following lines of code to the namespace2package.mappings file:
http\://www.globus.org/namespaces/<username>/CommissionService=org.globus.<usern
ame>_progtutorial.stubs.CommissionService
http\://www.globus.org/namespaces/<username>/CommissionService/bindings=org.glob
us.<username>_progtutorial.stubs.CommissionService.bindings
http\://www.globus.org/namespaces/<username>/CommissionService/service=org.globu
s.<username>_progtutorial.stubs.CommissionService.service

Building the service

The service is now ready to be built and deployed into the container. To build the service,
you need to run the build.sh script. This script in turn starts up ANT. ANT refers to the
build.xml file to carry out all the tasks required to build and package the service.

The build script takes two parameters:

« The base directory of the service implementation
org/globus/<username>_progtutorial/services/commission

« The schema definition file (.gwsdl)
schema/<username>_progtutorial/CommissionService/Commission.gwsdl

7. Execute build.sh
Execute “ant clean” and then execute the following:

./build.sh org/globus/<username>_progtutorial/services/commission
schema/<username>_progtutorial/CommissionService/Commission.gwsdl

CSE 487/587 Information Structures Spring 2005

Exploring the buiild directory
The build script causes a number of things to be generated. All these are present inside the
build directory inside $TUTORIAL_DIR.

build
| classes
| \——— org
| | globus
| | \——— <username>_progtutorial
| | | services
| | | \——— commission
| | | \——— impl
| | | \——— CommissionImpl.class
| | \——— stubs
| | \——— CommissionService
| | | CommissionPortType.class
| | | _calcComm.class
| | | _calcCommResponse.class
| | | bindings
| | | \——— CommissionServiceSOAPBindingStub.class
| | \——— service
| | | CommissionService.class
| | | CommissionServicelocator.class
| | \——— CommissionServiceGridLocator.class
| \——— gridforum
| \——— ogsi
| 1lib
| | <username>_progtutorial_CommissionService-stub. jar
| | org.globus.<username>_progtutorial.services.commission. jar
| \——- org_globus_<username>_progtutorial_services_commission.gar
| schema
| | NStoPkg.properties
| | <username>_progtutorial
| | | CommissionService
| | | | Commission.gwsdl
| | | | Commission.wsdl
| | | | Commission.xsd
| | | | Commission_bindings.wsdl
| | | \——— Commission_service.wsdl
| \——— ogsi
\——— stubs
\——— org
| globus
| \——— <username>_progtutorial
| \——— stubs
| \——— CommissionService
| | CommissionPortType. java
| | _calcComm. java
| | _calcCommResponse. java
| | bindings
| | \——— CommissionServiceSOAPBindingStub. java
| \——— service
| | CommissionService. java
| | CommissionServiceLocator. java
| \——— CommissionServiceGridLocator. java
\——- gridforum
\——— ogsi

« The classes subdirectory contain the compiled classes.

« The stubs subdirectory contains the source code of the stub files.
« The lib subdirectory contains the packaged jar and gar files.

« The schema subdirectory contains schema definition files

You should look at the contents of the gar and jar packages in the lib directory by using:

jar tf <gar-or-jar-name>

CSE 487/587 Information Structures Spring 2005

Deploy the service
Copy this generated gar file to either of the gar repositories, depending on which machine
you are working on.

8. Copy gar to gar repository
cp build/lib/org_globus_<username>_progtutorial_services_commission.gar
/home/csgrad/sjlobo/<machine>gars

Replace <machine> with either cerf / mills / vixie.

Setup CLASSPATH
After you copy the gar to the gar repository, it takes a while to deploy the service into
Globus. You will get an e-mail notifying you once the deploy is complete.

As part of the process of deploying the service, Globus copies jar files (that are present
inside your gar) into scrosus_rocaTIon/1ib. For your client to be able to use your service,
your system classpath must include these new jar files. To do this you need to source the
following file:

9. Source setenv.csh
source S$SGLOBUS_LOCATION/setenv.csh

Start container

9. Start container (if required also do grid-proxy-init)
ant startContainer -Dservice.port=5956

Create, compile and execute client
Now you can go ahead and compile and execute your client.

10. Write client (CommissionClient.java): It would be as follows:

package org.globus.mhvora_progtutorial.clients.commission;

import org.globus.mhvora_progtutorial.stubs.CommissionService.service.CommissionServiceGridLocator;
import org.globus.mhvora_progtutorial.stubs.CommissionService.CommissionPortType;

import java.net.URL;

public class CommissionClient
{
public static void main(String[] args)
{
try
{
// Get command-line arguments
URL GSH = new java.net.URL(args[0]);
double sales = Double.parseDouble (args[l]);
int grade = Integer.parselnt (args[2]);
// Get a reference to the CommissionService instance
CommissionServiceGridLocator commissionServicelLocator = new
CommissionServiceGridLocator () ;
CommissionPortType commission =
commissionServiceLocator.getCommissionServicePort (GSH) ;

CSE 487/587 Information Structures Spring 2005

The output should be 1500.

